Scaled Gradients on Grassmann Manifolds for Matrix Completion
نویسندگان
چکیده
This paper describes gradient methods based on a scaled metric on the Grassmann manifold for low-rank matrix completion. The proposed methods significantly improve canonical gradient methods, especially on ill-conditioned matrices, while maintaining established global convegence and exact recovery guarantees. A connection between a form of subspace iteration for matrix completion and the scaled gradient descent procedure is also established. The proposed conjugate gradient method based on the scaled gradient outperforms several existing algorithms for matrix completion and is competitive with recently proposed methods.
منابع مشابه
Building Deep Networks on Grassmann Manifolds
Learning representations on Grassmann manifolds is popular in quite a few visual recognition tasks. In order to enable deep learning on Grassmann manifolds, this paper proposes a deep network architecture by generalizing the Euclidean network paradigm to Grassmann manifolds. In particular, we design full rank mapping layers to transform input Grassmannian data to more desirable ones, exploit re...
متن کاملA Newton-Grassmann Method for Computing the Best Multilinear Rank-(r1, r2, r3) Approximation of a Tensor
We derive a Newton method for computing the best rank-(r1, r2, r3) approximation of a given J × K × L tensor A. The problem is formulated as an approximation problem on a product of Grassmann manifolds. Incorporating the manifold structure into Newton’s method ensures that all iterates generated by the algorithm are points on the Grassmann manifolds. We also introduce a consistent notation for ...
متن کاملRiemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation
We give simple formulas for the canonical metric, gradient, Lie derivative, Riemannian connection, parallel translation, geodesics and distance on the Grassmann manifold of p-planes in Rn. In these formulas, p-planes are represented as the column space of n £ p matrices. The Newton method on abstract Riemannian manifolds proposed by S. T. Smith is made explicit on the Grassmann manifold. Two ap...
متن کاملRiemannian stochastic variance reduced gradient on Grassmann manifold
Stochastic variance reduction algorithms have recently become popular for minimizing the average of a large, but finite, number of loss functions. In this paper, we propose a novel Riemannian extension of the Euclidean stochastic variance reduced gradient algorithm (R-SVRG) to a compact manifold search space. To this end, we show the developments on the Grassmann manifold. The key challenges of...
متن کاملLocalized LRR on Grassmann Manifolds: An Extrinsic View
Subspace data representation has recently become a common practice in many computer vision tasks. It demands generalizing classical machine learning algorithms for subspace data. Low-Rank Representation (LRR) is one of the most successful models for clustering vectorial data according to their subspace structures. This paper explores the possibility of extending LRR for subspace data on Grassma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012